Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neural Eng ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579740

RESUMO

OBJECTIVE: In neural electrical stimulation, safe stimulation guidelines are essential to deliver efficient treatment by avoiding neural damage and electrode degradation. The widely used Shannon's limit, k, gives conditions on the stimulation parameters to avoid neural damage, however, underlying damage mechanisms are not fully understood. Moreover, the translation from bench testing to in vivo experiments still presents some challenges, including the increased polarisation observed, which may influence charge-injection mechanisms. In this work, we studied the influence on damage mechanisms of two electrolyte parameters that are different in vivo compared to usual bench tests: solution pH and electrolyte gelation. APPROACH: The potential of a platinum macroelectrode was monitored in a three-electrode setup during current-controlled biphasic charge-balanced cathodic-first pulse trains. Maximum anodic and cathodic potential excursions during pulse trains were projected on cyclic voltammograms to infer possible electrochemical reactions. MAIN RESULTS: In unbuffered saline of pH ranging from 1 to 12, the maximum anodic potential was systematically located in the oxide formation region, while the cathodic potential was located the molecular oxygen and oxide reduction region when k approached Shannon's damage limit, independent of solution pH. The results support the hypothesis that Shannon's limit corresponds to the beginning of platinum dissolution following repeated cycles of platinum oxidation and reduction, for which the cathodic excursion is a key tipping point. Despite similar potential excursions between solution and gel electrolytes, we found a joint influence of pH and gelation on the cathodic potential alone, while we observed no effect on the anodic potential. We hypothesise that gelation creates a positive feedback loop exacerbating the effects of pH ; however, the extent of that influence needs to be examined further. SIGNIFICANCE: This work supports the hypothesis of charge injection mechanisms associated with stimulation-induced damage at platinum electrodes. The validity of a major hypothesis explaining stimulation-induced damage was tested and supported on a range of electrolytes representing potential electrode environments, calling for further characterisation of platinum dissolution during electrical stimulation in various testing conditions.

2.
J Neural Eng ; 20(1)2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36603213

RESUMO

Conductive polymers are of great interest in the field of neural electrodes because of their potential to improve the interfacial properties of electrodes. In particular, the conductive polymer poly (3,4)-ethylenedioxithiophene (PEDOT) has been widely studied for neural applications.Objective:This review compares methods for electrodeposition of PEDOT on metal neural electrodes, and analyses the effects of deposition methods on morphology and electrochemical performance.Approach:Electrochemical performances were analysed against several deposition method choices, including deposition charge density and co-ion, and correlations were explained to morphological and structural arguments as well as characterisation methods choices.Main results:Coating thickness and charge storage capacity are positively correlated with PEDOT electrodeposition charge density. We also show that PEDOT coated electrode impedance at 1 kHz, the only consistently reported impedance quantity, is strongly dependent upon electrode radius across a wide range of studies, because PEDOT coatings reduces the reactance of the complex impedance, conferring a more resistive behaviour to electrodes (at 1 kHz) dominated by the solution resistance and electrode geometry. This review also summarises how PEDOT co-ion choice affects coating structure and morphology and shows that co-ions notably influence the charge injection limit but have a limited influence on charge storage capacity and impedance. Finally we discuss the possible influence of characterisation methods to assess the robustness of comparisons between published results using different methods of characterisation.Significance:This review aims to serve as a common basis for researchers working with PEDOT by showing the effects of deposition methods on electrochemical performance, and aims to set a standard for accurate and uniform reporting of methods.


Assuntos
Materiais Revestidos Biocompatíveis , Galvanoplastia , Materiais Revestidos Biocompatíveis/química , Eletrodos , Polímeros/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia
3.
IEEE Trans Med Robot Bionics ; 3(4): 1032-1039, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34901764

RESUMO

Total laryngectomy (TL) affects critical functions such as swallowing, coughing and speaking. An artificial, bio-engineered larynx (ABL), operated via myoelectric signals, may improve quality of life for TL patients. To evaluate the efficacy of using surface electromyography (sEMG) as a control signal to predict instances of swallowing, coughing and speaking, sEMG was recorded from submental, intercostal and diaphragm muscles. The cohort included TL and control participants. Swallowing, coughing, speaking and movement actions were recorded, and a range of classifiers were investigated for prediction of these actions. Our algorithm achieved F1-scores of 76.0 ± 4.4 % (swallows), 93.8 ± 2.8 % (coughs) and 70.5 ± 5.4 % (speech) for controls, and 67.7 ± 4.4 % (swallows), 71.0 ± 9.1 % (coughs) and 78.0 ± 3.8 % (speech) for TLs, using a random forest (RF) classifier. 75.1 ± 6.9 % of swallows were detected within 500 ms of onset in the controls, and 63.1 ± 6.1 % in TLs. sEMG can be used to predict critical larynx movements, although a viable ABL requires improvements. Results are particularly encouraging as they encompass a TL cohort. An ABL could alleviate many challenges faced by laryngectomees. This study represents a promising step toward realising such a device.

4.
Front Neurosci ; 15: 681021, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366773

RESUMO

This article presents a versatile neurostimulation platform featuring a fully implantable multi-channel neural stimulator for chronic experimental studies with freely moving large animal models involving peripheral nerves. The implant is hermetically sealed in a ceramic enclosure and encapsulated in medical grade silicone rubber, and then underwent active tests at accelerated aging conditions at 100°C for 15 consecutive days. The stimulator microelectronics are implemented in a 0.6-µm CMOS technology, with a crosstalk reduction scheme to minimize cross-channel interference, and high-speed power and data telemetry for battery-less operation. A wearable transmitter equipped with a Bluetooth Low Energy radio link, and a custom graphical user interface provide real-time, remotely controlled stimulation. Three parallel stimulators provide independent stimulation on three channels, where each stimulator supports six stimulating sites and two return sites through multiplexing, hence the implant can facilitate stimulation at up to 36 different electrode pairs. The design of the electronics, method of hermetic packaging and electrical performance as well as in vitro testing with electrodes in saline are presented.

5.
Plast Reconstr Surg Glob Open ; 7(9): e2391, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31741811

RESUMO

A combined approach for prosthetic attachment and control using a transcutaneous bone-anchored device and implanted muscle electrodes can improve function for upper-limb amputees. The bone-anchor provides a transcutaneous feed-through for muscle signal recording. This approach can be combined with targeted muscle reinnervation (TMR) to further improve myoelectric control. METHODS: A bone-anchored device was implanted trans-tibially in n = 8 sheep with a bipolar recording electrode secured epimysially to the peroneus tertius muscle. TMR was carried out in a single animal: the peroneus tertius was deinnervated and the distal portion of the transected nerve to the peroneus muscle was coapted to a transected nerve branch previously supplying the tibialis anterior muscle. For 12 weeks (TMR) or 19 weeks (standard procedure), epimysial muscle signals were recorded while animals walked at 2 km·h-1. RESULTS: After 19 weeks implantation following standard procedure, epimysial recording signal-to-noise ratio (SNR) was 18.7 dB (± 6.4 dB, 95% CI) with typical recordings falling in the range 10-25 dB. Recoveries in gait and muscle signals were coincident 6 weeks post-TMR; initial muscle activity was identifiable 3 weeks post-TMR though with low signal amplitude and signal-to-noise ratio compared with normal muscle recordings. CONCLUSIONS: Following recovery, muscle signals were recorded reliably over 19 weeks following implantation. In this study, targeted reinnervation was successful in parallel with bone-anchor implantation, with recovery identified 6 weeks after surgery.

6.
IEEE Trans Biomed Circuits Syst ; 13(2): 259-270, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30624225

RESUMO

This paper presents an active microchannel neural interface (MNI) using seven stacked application specific integrated circuits (ASICs). The approach provides a solution to the present problem of interconnect density in three-dimensional (3-D) MNIs. The 4 mm2 ASIC is implemented in 0.35 µm high-voltage CMOS technology. Each ASIC is the base for seven microchannels each with three electrodes in a pseudo-tripolar arrangement. Multiplexing allows stimulating or recording from any one of 49 channels, across seven ASICs. Connections to the ASICs are made with a five-line parallel bus. Current controlled biphasic stimulation from 5 to 500 µA has been demonstrated with switching between channels and ASICs. The high-voltage technology gives a compliance of 40 V for stimulation, appropriate for the high impedances within microchannels. High frequency biphasic stimulation, up to 40 kHz is achieved, suitable for reversible high frequency nerve blockades. Recording has been demonstrated with mV level signals; common-mode inputs are differentially distorted and limit the CMRR to 40 dB. The ASIC has been used in vitro in conjunction with an oversize (2 mm diameter) microchannel in phosphate buffered saline, demonstrating attenuation of interference from outside the microchannel and tripolar recording of signals from within the microchannel. By using five-lines for 49 active microchannels the device overcomes limitations when connecting many electrodes in a 3-D miniaturized nerve interface.


Assuntos
Encéfalo/fisiologia , Eletrônica Médica , Estimulação Elétrica , Eletricidade , Eletrodos , Eletrodos Implantados , Processamento de Sinais Assistido por Computador
7.
J Neural Eng ; 14(3): 036012, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28272027

RESUMO

OBJECTIVE: High-density electrode arrays are a powerful tool in both clinical neuroscience and basic research. However, current manufacturing techniques require the use of specialised techniques and equipment, which are available to few labs. We have developed a high-density electrode array with customisable design, manufactured using simple printing techniques and with commercially available materials. APPROACH: Electrode arrays were manufactured by thick-film printing a platinum-gold alloy (Pt/Au) and an insulating dielectric on 96% alumina ceramic plates. Arrays were conditioned in serum and serum-free conditions, with and without 1 kHz, 200 µA, charge balanced stimulation for up to 21 d. Array biocompatibility was assessed using an extract assay and a PC-12 cell contact assay. Electrode impedance, charge storage capacity and charge injection capacity were before and after array conditioning. MAIN RESULTS: The manufactured Pt/Au electrodes have a highly porous surface and exhibit electrical properties comparable to arrays manufactured using alternative techniques. Materials used in array manufacture were found to be non-toxic to L929 fibroblasts by extract assay, and neuronal-like PC-12 cells adhered and extended neurites on the array surfaces. Arrays remained functional after long-term delivery of electrical pulses while exposed to protein-rich environments. Charge storage capacities and charge injection capacities increased following stimulation accounted for by an increase in surface index (real surface area) observed by vertical scanning interferometry. Further, we observed accumulation of proteins at the electrode sites following conditioning in the presence of serum. SIGNIFICANCE: This study demonstrates the in vitro biocompatibility of commercially available thick-film printing materials. The printing technique is both simple and versatile, with layouts readily modified to produce customized electrode arrays. Thick-film electrode arrays are an attractive tool that may be implemented for general tissue engineering and neuroscience research.


Assuntos
Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Eletrodos , Ouro/química , Ouro/farmacologia , Platina/farmacologia , Análise Serial de Tecidos/instrumentação , Ligas/síntese química , Ligas/farmacologia , Óxido de Alumínio/química , Amiodarona/análogos & derivados , Animais , Materiais Biocompatíveis/síntese química , Impedância Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Células PC12 , Platina/química , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
J Neural Eng ; 13(3): 034001, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27001943

RESUMO

OBJECTIVE: Microchannel neural interfaces (MNIs) overcome problems with recording from peripheral nerves by amplifying signals independent of node of Ranvier position. Selective recording and stimulation using an MNI requires good insulation between microchannels and a high electrode density. We propose that stacking microchannel laminae will improve selectivity over single layer MNI designs due to the increase in electrode number and an improvement in microchannel sealing. APPROACH: This paper describes a manufacturing method for creating MNIs which overcomes limitations on electrode connectivity and microchannel sealing. Laser cut silicone-metal foil laminae were stacked using plasma bonding to create an array of microchannels containing tripolar electrodes. Electrodes were DC etched and electrode impedance and cyclic voltammetry were tested. MAIN RESULTS: MNIs with 100 µm and 200 µm diameter microchannels were manufactured. High electrode density MNIs are achievable with electrodes present in every microchannel. Electrode impedances of 27.2 ± 19.8 kΩ at 1 kHz were achieved. Following two months of implantation in Lewis rat sciatic nerve, micro-fascicles were observed regenerating through the MNI microchannels. SIGNIFICANCE: Selective MNIs with the peripheral nervous system may allow upper limb amputees to control prostheses intuitively.


Assuntos
Interfaces Cérebro-Computador , Metais/química , Neurônios/fisiologia , Silicones/química , Animais , Impedância Elétrica , Eletrodos , Eletrodos Implantados , Análise de Falha de Equipamento , Interferometria , Masculino , Nervos Periféricos/fisiologia , Desenho de Prótese , Ratos , Ratos Endogâmicos Lew
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...